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Abstract— Pollution is one of the main negative outcomes for 
rapid economic growth without sustainable development in China. 
Different types of pollutions are harming people’s health and the 
impacts of pollution on environment and people’s health could last 
for decades. Fine particulate matter(PM2.5), which is one of most 
common types of air pollutions in China, could penetrate and 
sediment in human’s respiratory system and cause different kind 
of respiratory diseases. Research has shown the strong association 
between Aerosol Optical Depth (AOD) and PM2.5. For this 
reason, remote sensing imagery could be used to estimate the level 
of PM2.5 concentration near ground. With utilizing PM2.5 dataset 
estimated by Socioeconomic Data and Applications Center 
(SEDAC) and machine learning approach, this paper is aimed to 
provide spatiotemporal comparison of PM2.5 concentrations in 
China. Result from this analysis could help people to better 
understand the recent history and current status of PM2.5 
pollution in China. 
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I. INTRODUCTION 
Pollution is one of the main negative outcomes for rapid 

economic growth in China [1]. China started suffering from air 
pollution since early 2000s. Although it is not easy to identify 
all sources of PM2.5, research has grouped PM2.5 into two 
categories based on its formation processes: primary and 
secondary sources [1]. Primary source includes all sources 
release PM2.5 into air directly, and all other non-direct PM2.5 
emissions are considered as secondary sources [1]. Despite 
PM2.5 came from diverse sources, the outcomes are similar and 
research on the impact of PM2.5 has taken place in developed 
countries for many years. On the contrast, PM2.5 related studies 
in developing counties did not bring enough attrition until recent 
years.  

Recent research summarized the influences of excessive 
PM2.5 pollution in China for past few decades [1]. First of all, 
visibility may be reduced when the concentration of PM2.5 is 
high in atmosphere [1]. Some scientists also suggested that high 
PM2.5 concentrations in air is also associated with regional and 
global climate change [1]. Significant health threat is one of 
worst impacts from PM2.5 pollution. According to a research in 
2015, air pollution leaded to 1.6 million mortality each year in 
China [2]. Although it is an estimation based on statistical 
models, the impact to people’s health from air pollution is 
unignorably. [1] summarized studies on PM2.5 and human 
health and concluded the existence of association between 

PM2.5 and mortality. Fine particulate matter(PM2.5) could 
sediment in human’s respiratory system and cause serious health 
problems [1], [3], [4].   

Remote sensing technique has been widely utilized in many 
different fields [5], [6], [7], [8], [9], [10], [11], [12], [13]. It is 
also used to monitor and analysis PM2.5 became popular since 
the ground measurement of PM2.5 concentration was not 
existing until early 2000s. With utilizing PM2.5 dataset 
generated by National Aeronautics and Space Administration 
Socioeconomic Data and Applications Center (NASA SEDAC), 
this paper will conduct spatial and temporal analysis on the 
PM2.5 concentration for China. 400 cities were evaluated to see 
if any spatial or temporal variation and trend exist. The paper 
also aims to group cities by PM2.5 concentration and temporal 
variation using machine learning approaches. 

II. DATA 
Most early studies of air pollution in China were not started 

until the beginning of twenty-first century [1]. The monitoring 
and collecting of air pollution data began in less than 10 years, 
and massive studies on air pollution were initiated after the 
establishment of China’s PM2.5 air quality standard [1]. Many 
cities provided air quality observation data has been widely used 
in research to study air pollution in China. However, research 
has found evidences showing more than fifty cities’ self-
reported PM2.5 data from 2000 to 2010 were manipulated [14]. 
Alternatively, remote sensing imageries provides objectively 
data source to estimate air pollution in China.  

Aerosol Optical Depth (AOD), which could be used to 
measure PM2.5 concentrations by calculating scattering of light 
in atmosphere, could be obtained from multiple satellites [4]. 
PM2.5 annual average grid data (1998 to 2016) used in this 
research was derived from MODIS, MISR and SeaWiFS 
Aerosol Optical Depth (AOD) with Geographically Weighted 
Regression GWR [15]. The product was implemented and 
distributed by National Aeronautics and Space Administration 
Socioeconomic Data and Applications Center (NASA SEDAC) 
[15]. Near surface PM2.5 was estimated using GEOS-Chem 
chemical transport model and adjusted by Geographically 
Weighted Regression at 0.01degree resolution for most of the 
world [15]. 

Some critical values of PM2.5 concentration discussed in 
this paper were observed from two official agencies: United 
States Environmental Protection Agency (EPA), and Ministry of 
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Environmental Protection (MEP, China). Both agencies provide 
national standards on annual average PM2.5 concentration 
(ug/m3). EPA revised the standard in 2012 (15 ug/m3 prior to 
2012), and now the standard for annual PM2.5 is 12 ug/m3. 
Meanwhile, the China’s standard is 15 ug/m3 for national park 
and 35 ug/m3 for all other places. PM2.5 standards from World 
Health Organization [16] is 10 ug/m3 which is stricter, but 
“WHO Air Quality Guidelines” also stated that annual average 
PM2.5 for developing cities is about 35 ug/m3 (World Health 
Organization, 2016).   

III. METHOD 
PM2.5 grid data from 1998 to 2016 for China was subtracted 

from the entire dataset using ArcGIS. Three-year-mean PM 2.5 
between 1998-2000 and 2014-2016 were calculated to 
demonstrate the overall air pollution status (Figure 1&2). From 
two maps produced from previous step, a map of PM2.5 
difference was calculated to quantify the net increase of PM2.5 
for China (Figure 3).  Results were classified into different 
categories according to EPA standard and China Air Quality 
Standard. 

Information of locations and rank-by-size for 400 cities in 
China was downloaded from Natural Earth (Hongkong, Macao 
and Taiwan were not included in this study), an open map 
dataset available to public. Depended on the size ranking, 400 
cities were grouped into eight classes. Spatial average of PM2.5 
concentrations for 400 cities was calculate for year 1998 to 
2016. Result was tested to see if temporal trend exists for cities 
using Mann-Kendall (MK) method. Temporal mean (1998 to 
2016) PM2.5 concentrations were calculated by the size of city, 
from largest to smallest. Result was evaluated to see if PM2.5 
concentrations are different when cities’ sizes change. Net 
PM2.5 increases for different groups of cities then calculated. 
Statistical analyzes were conducted to see if PM2.5 
concentration increase speed changes for different size of cities. 

Hierarchical clustering approach was adopted in order to 
find pattern on PM2.5 concentration and temporal variation 
using open source Scipy library in Python. 31 cities were 
selected from 400 cities to avoid spatial autocorrelation. A 
dendrogram was generated to compare the pattern distance 
between cities. Different cluster numbers were tested to find the 
best classification result. Patterns for classes from hierarchical 
clustering method were visually compared. 

IV. RESULT AND DISCUSSION 
Few three-year- mean PM2.5 concentrations maps for China 

were generated and classified using old EPA and MEP’s 
standards. Three-years-mean PM2.5 map from 1998 to 2000 
shown that most regions of China met MEP’s PM2.5 standard 
(<35 ug/m3) while about half of China were within EPA’s 
PM2.5 standard (<15 ug/m3) (Figure 1). Three-years-mean 
PM2.5 map from 2014 to 2016 shown that total area met old 
EPA’s PM2.5 standard (<15 ug/m3) decreased significantly 
(Figure 2). Meanwhile, areas which disqualifying both EPA and 
MEP’s standards increased dramatically. From these maps, it is 
clear to see two large regions suffered from PM2.5 pollution: 1) 
Northeast China provinces, 2) Mid-east China (provinces 
between two mega cites: Beijing and Shanghai). In addition, 

many high PM2.5 concentration hotspots could be identified 
from the maps. 

A net PM2.5 increase map was generated from three-years-
mean PM2.5 for 1998 to 2000 and 2014 to 2016 (Figure 3). 
Result shows that air quality for most regions of China was 
decreasing between 1998 to 2016 with only few exceptions. The 
increase of PM2.5 concentrations level for two regions 
mentioned earlier in this paper (Northeast and Mid-east China) 
is more than two time over current EPA standard (12 ug/m3). 

 
Fig. 1. 3-year mean PM2.5 concentration for 1998-2000. 

 
Fig. 2. 3-year mean PM2.5 concentration for 2014-2016. 
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Fig. 3. Net PM2.5 increase from 1998 to 2016. 

 
Fig. 4. Net PM2.5 increase for cities in China. 

 
Fig. 5. Temporal trend of PM2.5 increase for cities in China. 

 
Fig. 6. Temporal average and net increase of PM2.5 concentration for 
different scale of cities. (large to small city rank, left to right) 

 
Fig. 7. PM2.5 concentration for different scale of cities (1998-2000 and 2014-
2016) (large to small city rank, left to right) 

Temporal average PM2.5 concentration suggested that 48 
cities met the EPA standard, 136 cities failed in EPA standard 
but passed MEP standard, and 216 of China’s cities failed in 
both standards (Figure 4). Mean PM2.5 concentrations level 
from 1998 to 2016 for all cities was calculated and compared. 
Result shows there was an increase trend of PM2.5 
concentration from 1998 to 2016 (Figure 5). Mann-Kendall 
(MK) test suggested the trend is significant with p-value <0.01. 
400 cities were grouped into 8 classed based on their size. For 
each class, average annual PM2.5 concentrations were 
calculated, and result implied that concentrations in larger cities 
are not different from smaller cities (95% confidence level) 
(Figure 6). However, PM2.5 concentration increase speed in 
larger cities are significant faster than smaller city(p<0.05). 
Figure 7 summarized the average PM2.5 concentrations 
between 1998 to 2000 and 2014 to 2016, the result shows cities 
in rank 4 have low annual PM2.5 concentration in both 1998-
2000 and 2014-2016 compare with other cities from visual 
comparison. 

PM2.5 concentration has strong spatial autocorrelation due 
to the air circulation. To avoid spatial autocorrelation, 31 were 
selected from 400 cities: 22 provinces’ capitals, 5 capitals of 
municipalities and 4 municipality cities. Hierarchical clustering 
was used to classify cities into various categories base on their 
temporal trend. After tested results with 2 to 10 classes, we 
found best result exist when data divided into three class and the 



978-1-5386-5038-7/18/$31.00 ©2018 IEEE 
 

temporal patterns were meaningful (figure 8). Cities in first 
group (Aggressive growth) has a high PM2.5 concentration 
level in 1998 and significantly increased during study period 
(Figure 9). Cities in second group (Moderate growth) has a 
relative lower PM2.5 concentration level in 1998 and relative 
slow growth rate in PM2.5 compared with first group (Figure 9). 
Third group (No significant growth) has low PM2.5 
concentration level across the study period (Figure 9). Cities in 
Aggressive growth class are spatial close to each other, while 
other two classes do not seem to have geographic correlation. 
Table 1 listed classification result for all 31 studied cities. 

 
Fig. 8. Hierarchical Clustering Dendrogram with 3 classes. 

 

Fig. 9. Temporal pattern for 3 classes from unsupervised classification. 

Group Cities 

Aggressive growth  Beijing, Tianjin, Jinan, Shijiazhuang, Zhengzhou 

Moderate growth  Shanghai, Urumqi, Chengdu, Lanzhou, Guiyang, Nanning, Fuzhou, 

Changchun, Guangzhou, Harbin, Nanchang, Changsha, Taiyuan, 

Wuhan, Nanjing, Hangzhou, Hefei, Shenyang, Chongqing, Xian 

No significant growth  Kunming, Lhasa, Yinchuan, Xining, Hohhot, Haikou 

Table 1: Detail list of cities in each classification results 

V. CONCLUSION AND FUTURE WORK 
The association between PM2.5 and mortality is proved in 

many studies. Reducing the PM2.5 concentration will help to 
improve human’s living quality and reduce mortality. World 
Health Organization estimated that there would be 15% less air-
pollution-related death if PM2.5 concentrations reduced from 
35ug/m3 to 10ug/m3 (World Health Organization, 2016). The 
understanding of PM2.5 concentrations’ spatial and temporal 
distribution is critical and urgent for developing counties which 
are suffering from air pollution such as China. 

Remote sensing based air quality monitoring and analyzing 
became more important and valuable given the unreliability of 
PM2.5 ground measurements which are self-reported by local 
governments. Using serval methods and multiple satellites data, 
NASA Socioeconomic Data and Applications Center (SEDAC) 
provided annual average PM2.5 data from 1998 to 2016 [15]. 
PM2.5 standards discussed in this research were observed from 
United States Environmental Protection Agency (EPA), 
Ministry of Environmental Protection (MEP, China), and World 
Health Organization [16]. This paper utilized these datasets and 
standard to study spatial and temporal variation of PM 2.5 
concentration in China from 1998 to 2016. In addition, analyses 
were performed over 400 cities in China to test the if there is a 
temporal trend for air pollution in China. This paper also tried to 
find if there is any association between size of cities and PM2.5 
concentrations. 

Result suggested that PM 2.5 concentration increased 
significantly from 1998 to 2016 for 400 cities in China (p<0.01) 
regardless of the size of city. Moreover, two heavy air pollution 
impacted regions were identified: north-east provinces of China 
(Heilongjiang, Jilin, and Liaoning) and mid-east provinces of 
China (Beijing, Tianjin, Hebei, Henan, Shandong, Hubei, 
Jiangsu, Anhui, and Shanghai). Result also implied that PM2.5 
concentration increasing speed is higher when a city is 
larger(p<0.1) based on the data from 1998 to 2016. 

Unsupervised classification method was utilized in this 
research to detect temporal trend patter for the PM2.5 
concentration variation between 1998 and 2016. To avoid spatial 
autocorrelation, 31 cities were selected in the experiment 
including 22 provinces  capitals, 5 capitals of municipalities 
and 4 municipality cities. Three types of PM2.5 temporal 
patterns were identified in the result: 1) Aggressive growth (5 
cities), 2) Moderate growth (20 cities), 3) No significant growth 
(6 cities). Following observations could be found from these 
three categories: cities with aggressive PM2.5 growths are 
spatially closer to each other compare with other two classes. 
Aggressive growth class has much rapid growth rate. Other two 
classes do not have spatial similarities. Cities in third class do 



978-1-5386-5038-7/18/$31.00 ©2018 IEEE 
 

not have significant economic growth during study period so the 
stable PM2.5 concentrations may be related with stable 
economic environment. Further research is needed on following 
aspects: 1) further evaluate the classification results; 2) identity 
the cause of these different temporal patterns; 3) find approaches 
to reduce PM2.5 concentration to meet MEP standard. 
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